Artificial Neural Network Model to Estimate the Viscosity of Polymer Solutions for Enhanced Oil Recovery "2279
نویسندگان
چکیده
Polymer flooding is now considered a technicallyand commercially-proven method for enhanced oil recovery (EOR). The viscosity of the injected polymer solution is the key property for successful polymer flooding. Given that the viscosity of a polymer solution has a non-linear relationship with various influential parameters (molecular weight, degree of hydrolysis, polymer concentration, cation concentration of polymer solution, shear rate, temperature) and that measurement of viscosity based on these parameters is a time-consuming process, the range of solution samples and the measurement conditions need to be limited and precise. Viscosity estimation of the polymer solution is effective for these purposes. An artificial neural network (ANN) was applied to the viscosity estimation of FlopaamTM 3330S, FlopaamTM 3630S and AN-125 solutions, three commonly-used EOR polymers. The viscosities measured and estimated by ANN and the Carreau model using Lee’s correlation, the only method for estimating the viscosity of an EOR polymer solution in unmeasured conditions, were compared. Estimation accuracy was evaluated by the average absolute relative deviation, which has been widely used for accuracy evaluation of the results of ANN models. In all conditions, the accuracy of the ANN model is higher than that of the Carreau model using Lee’s correlation.
منابع مشابه
Improvement of Thermal Stability of Polyacryl amide Solution Used as a Nano-fluid in Enhanced Oil Recovery process by Nanoclay
Research in nanotechnology in the petroleum industry is advancing rapidly and an enormous progress in the application of nanotechnology in this area is to be expected. In particular, adding nanoparticles to fluids may drastically benefit enhanced oil recovery and improve well drilling, by changing the properties of the fluid, rocks wettability alteration, advanced drag reduction, strengthen...
متن کاملNeural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes
Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...
متن کاملAn Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow
In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...
متن کاملAn Artificial Neural Network Model for Predicting the Pressure Gradient in Horizontal Oil–Water Separated Flow
In this study, a three–layer artificial neural network (ANN) model was developed to predict the pressure gradient in horizontal liquid–liquid separated flow. A total of 455 data points were collected from 13 data sources to develop the ANN model. Superficial velocities, viscosity ratio and density ratio of oil to water, and roughness and inner diameter of pipe were used as input parameters of ...
متن کاملArtificial Neural Network Modeling for the Management of Oil Slick Transport in the Marine Environments
Due to an increase in demand of petroleum products which are transported by vessels or exported by pipelines, oil spill management becomes a controversial issue in coastal environment safety as well as making serious financial problems. After spilling oil in the water body, oil spreads as a thin layer on the water surface. Currents, waves and wind are the main causes of oil slick transport. The...
متن کامل